

Equipe

Gerassol

O Sol é para todos, a energia elétrica também.

SUMÁRIO EXECUTIVO

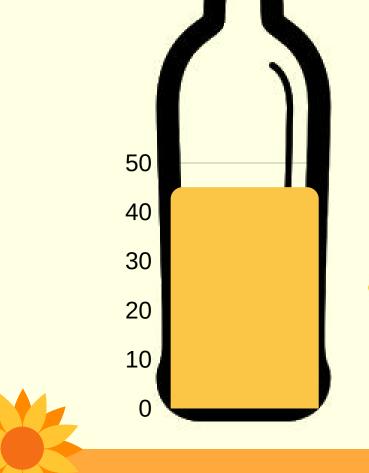
Falta de energia elétrica em propiedades no Brasil

- 2 milhões de brasileiros vivem totalmente sem energia elétrica, gerando problemas na saúde, educação e geração de renda.
- Moradores veem-se obrigados a usar métodos mais caros e não sustentáveis, como a compra do querosene ou álcool.
- A grande maioria não possui condições para adquirir energia alternativa, como painéis solares.

Toneladas de vidro anualmente descartados sem reaproveitamento

•97% do lixo produzido no Brasil não é reciclado e cerca de 470 mil toneladas de vidro são enviados para aterros sanitários.

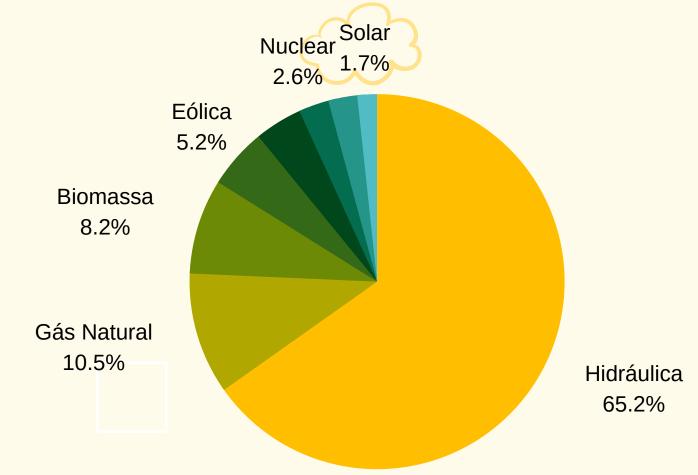
- O vidro está presente diariamente em nossas vidas, e não sendo reciclado, demora no mínimo quatro mil anos para se decompor.
- A falta de conscientização da população em relação ao descarte inapropriado de lixo gera grandes problemas ambientais.

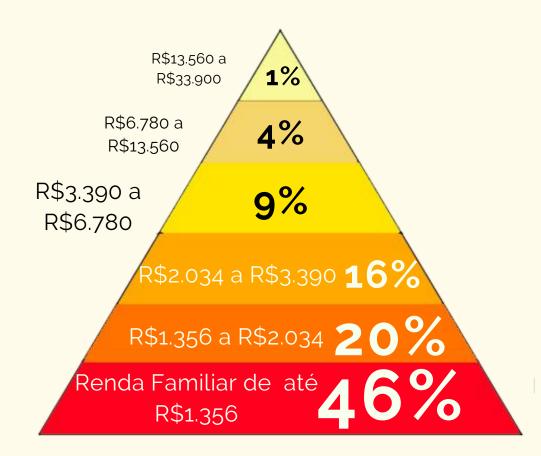

Uma solução: produção de energia elétrica a partir da reciclagem de vidro

- Com vidro transparente reciclado e produtos químicos, será produzido painéis solares de baixo custo comparado a painéis de silício.
- Painel de fácil produção e acessível.
 Melhora a qualidade de vida da população em áreas como: educação, saúde e empregabilidade.
 - A confecção do painel gerará campanhas de conscientização na comunidade, mostrando sua importância e incentivando a reciclagem do vidro.

DADOS E INFORMAÇÕES

De 980 mil toneladas de embalagens de vidro produzidas por ano no país, 45% do vidro é reciclado na forma de cacos.





DADOS E INFORMAÇÕES

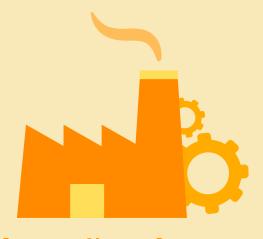
O uso da energia solar no Brasil corresponde a 1,7% de toda a matriz energética brasileira.

A energia solar residencial corresponde a 72,6% do total da energia fotovoltaica no Brasil. A utilizada para empresas e comércios corresponde a 17.99% do total e os 6,25% restantes são de utilizações rurais.

O uso da energia solar fotovoltaica obteve um crescimento de 45% em relação a 2018. Porém, apesar dessa tecnologia estar em expansão e ser acessível residencialmente, seus preços a tornam economicamente inviável para a parte da população que mais precisa dela.

O PORQUÊ DA ESCOLHA DO PROJETO

Após observar os problemas relacionados a falta de acesso à energia elétrica e ao descarte indevido do vidro, a ideia que surgiu foi de um projeto que conseguisse solucionar ambos problemas. Ainda, o projeto promete resolver o maior problema observado sobre a energia solar fotovoltaica: seu preço. Com isso, o projeto Gerassol, além de gerar energia a partir de uma fonte renovável, também contribui para reciclagem e sustentabilidade ambiental, sendo uma forma eficiente e economicamente acessível a comunidades mais necessitadas.



FASES DO PROJETO

Arrecadação de materiais

Para a confecção do painel será utilizado vidro reciclado, alguns compostos químicos e vegetais com antocianina. A arrecadação de vidro se dará por meio de campanhas feitas na cidade, em residências e estabelecimentos como restaurantes, escolas e vidraçarias. Os frutos com antocianina, serão comprados de produtores locais. Os demais químicos serão obtidos com o lucro de vendas ou parcerias.

Fabricação do produto

O vidro obtido será encaminhado para uma fábrica onde serão feitas as placas de vidro. Após, o cloreto de estanho será aplicado para assim permitir a condução de energia elétrica. Para a fixação do pigmento encontrado obtido, será utilizado o dióxido de titânio misturado com ácido nítrico. Após a aplicação de um pouco de solução de iodo com iodeto de potássio, o painel está pronto para o funcionamento.

Entraremos em contato com as comunidades necessitadas para a instalação dos painéis após sua confecção. Tanto a instalação como a aplicação de baterias ou outros recursos será terceirizada para outra empresa. Para uma expansão do projeto, poderíamos recorrer a empresas e organizações, como a ONG Litro de Luz, que leva energia solar para a Amazônia.

MATERIAIS

Cloreto de estanho

Utilizado para transformar as placas de vidro em condutores.

Ácido nítrico

Dióxido de titânio

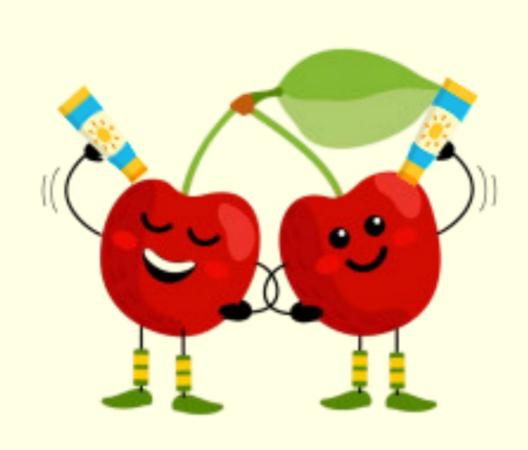
Solução utilizada para a fixação do pigmento e absorção de luz solar.

Placas de vidro

Após o vidro ser obtido através da campanha de reciclagem, eles serão levados para uma fábrica e transformados em placas.

lodeto de potássio

Iodo


Solução que possibilitará a conservação das propriedades da antocianina.

Pigmento antocianina

Encontrado em diversos vegetais, um pigmento capaz de absorver luz solar.

O PIGMENTO MÁGICO: A ANTOCIANINA

A antocianina é um pigmento roxo-avermelhado e sua principal função é a proteção de plantas, flores e frutos contra a luz ultravioleta.

Este pigmento atua como um filtro solar, absorvendo a luz do Sol e protegendo a planta. Em nosso trabalho, ele será um dos principais responsáveis por captar a energia solar, para assim, transformá-la em energia elétrica.

Há uma enorme variedade de plantas e frutas que possuem este pigmento, desde framboesas, uvas e repolhos-roxos até petúnias, jabuticabas e a fruta nativa do Rio Grande do Sul, a pitanga.

A utilização deste pigmento para captação de energia, além de não danificar o meio ambiente, incentiva práticas sustentáveis e a produção local da fruta pitanga para comercialização.

CUSTOS

Cloreto de estanho

Quantidade utilizada: 20 g Preço por painel: R\$13,00

Ácido nítrico

Quantidade utilizada: 100 mL Preço por painel: R\$5,40

Placa tamanho padrão: 1,65 m x 1 m

Dióxido de titânio

Quantidade utilizada: 150 g Preço por painel: R\$3,75

Placas de vidro

Preço de fabricação e transporte: R\$200,00

Antocianina

Quantidade utilizada: 150 mL Preço aprox: R\$4,50

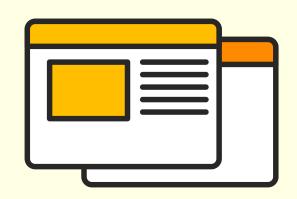
Iodo

Quantidade utilizada: 20 mL Preço por painel: R\$7,25

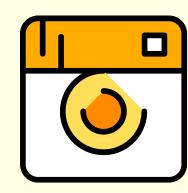
lodeto de potássio

Quantidade utilizada: 10 g Preço por painel: R\$8,00

Custo total do painel solar: R\$241,90



Painéis fotovoltaicos	Painel de silício monocristalino	Painel de silício policristalino	Painel de filmes finos	Painel de vidro Gerassol
Eficácia	20 %	15%	10%	8%
Resistência	Granizo, chuvas, ventos, variações de temperatura	Granizo, chuvas, ventos, variações de temperatura	Chuvas, granizo, ventos, variações de temperatura	Chuvas, ventos, temperaturas quentes
Impactos ambientais	Na confecção, emite pó sílica, ácido clorídrico e sulfúrico. Na extração do silício, a flora é degradada.	Na confecção, emite pó sílica, ácido clorídrico e sulfúrico. Na extração do silício, a flora é degradada.	Materiais tóxicos liberados na confecção, que causam doenças e danos ao meio ambiente.	Possível emissão de gases na confecção. Por conta dos componentes químicos, polui se descartado incorretamente.
Confecção	Feitas com fatias de cristal de silício, muito finas e que trincam com facilidade.	Feitas com fatias de cristal de silício, muito finas e que trincam com facilidade.	Feitas com materiais raros, acarretando em processos de produção complexos e maiores necessidades energéticas.	Matéria prima reciclada e natural, não necessita de uma grande indústria para confecção.
Preço	R\$ 850,00	R\$ 700,00	R\$ 900,00	R\$ 241,90



DIVULGAÇÃO E PROMOÇÃO DO PROJETO

Site Oficial Gerassol

Página oficial do projeto, onde é possível acessar o vídeo e a apresentação de slides, podendo assim aprender sobre a energia fotovoltaica e o funcionamento detalhado do projeto. Também é possível conhecer a equipe e sua trajetória.

Instagram

Onde é feita grande parte da divulgação. A evolução do projeto será constantemente atualizada através de postagens.

Aplicativo

Disponível para smartphones, será uma ferramenta de comunicação. Tanto pessoas que queiram adquirir o painel ou pessoas que queiram doar vidro ou algum valor em dinheiro, poderão entrar em contato e cadastrar-se diretamente através deste.

Panfletos

Panfletos informativos serão distribuídos em escolas, restaurantes e comércios. Este apresentará brevemente o projeto, mencionando os objetivos e metas. Também informará como entrar em contato

com a equipe.

ANÁLISE DO PROJETO

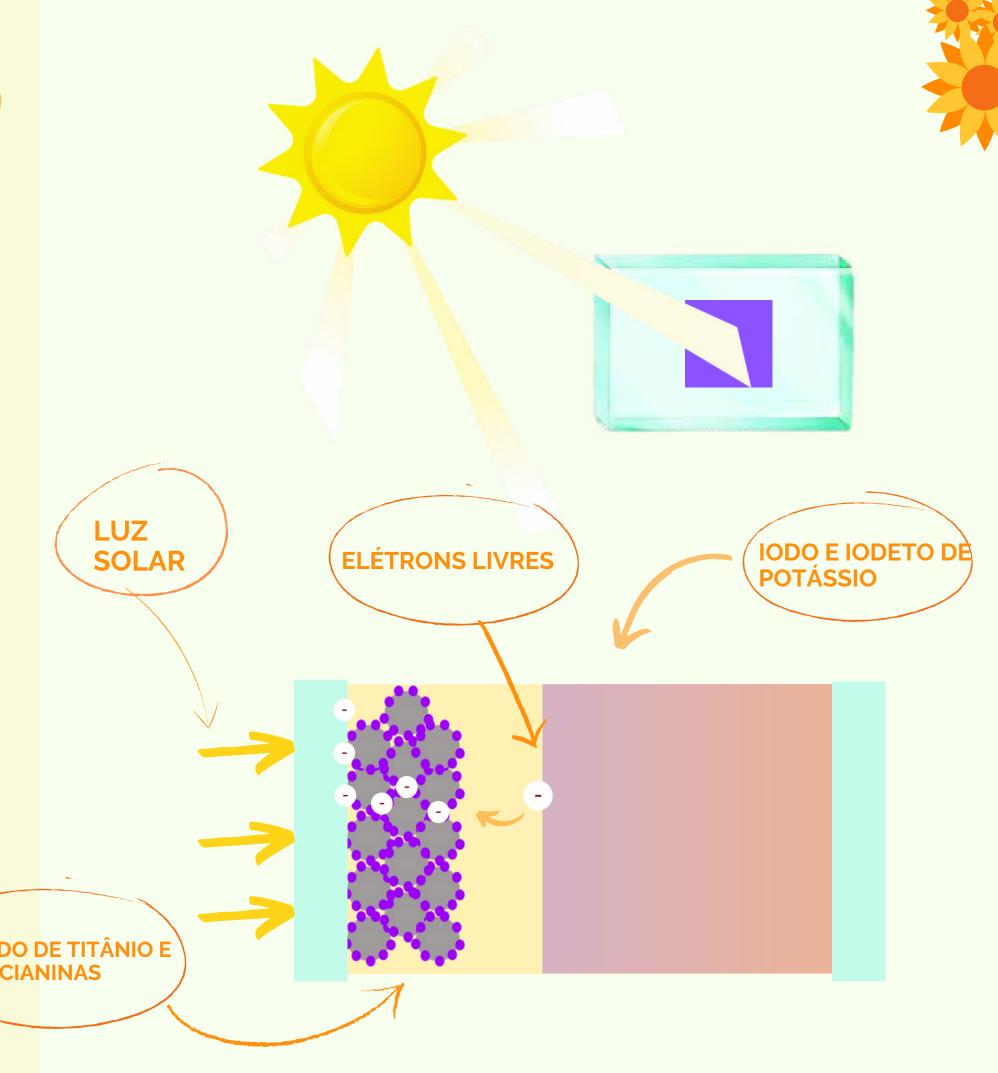
FRAQUEZAS

- Painel de baixo custo e eficácia satisfatória.
- •Alternativa limpa e renovável acessível para a população menos favorecida.
 - Incentiva a sociedade a reciclar o lixo.
- Capacidade da equipe, como técnicos em energias renováveis, em realizar o projeto.

FORTALEZAS

- Expansão do mercado fotovoltaico e renovável.
- Aplicável em diversas regiões do Brasil.
- Apoio governamental para a implementação de energia elétrica.
- Estimula estudantes a envolver-se em pesquisas científicas, buscando solucionar problemas reais.

- Vidros devem ser seletivamente transparentes, o que dificulta a reciclagem.
- Baixa resistência das placas a climas muito frios e ventos fortes.
- Dependência da mobilização social para a reciclagem do vidro.
- Dependência de fábricas para a transformação do vidro em placas.



- Relutância por parte da população por implementar um sistema desconhecido.
- Grande variação de temperaturas no país poderá prejudicar a eficácia das placas.

FUNCIONAMENTO

Para o funcionamento, a luz solar deve passar através do vidro, e atingir as antocianinas fixadas no dióxido de titânio. Os fótons que atingirem o pigmento criam nele um estado de excitação, de onde um elétron é solto e vai diretamente para banda de condução. Devido à perda do elétron a molécula de corante se decompõe, mas em seguida é regenerada por um elétron do composto de iodo. Isto permite a passagem constante de elétrons, gerando assim, corrente elétrica.

FASE EXPERIMENTAL E POSSIBILIDADES DE EXPANSÃO

O projeto será implementado primeiramente em zonas necessitadas da cidade. Será considerado qualquer lugar que apresente um déficit de energia. Para a expansão, o projeto conta com o auxílio de ONGs que levam energia a outras regiões. Como o projeto iniciará em uma cidade fronteiriça, o projeto pode ser facilmente expandido para o Uruguai, atingindo assim, mais comunidades necessitadas. A fase experimental consistirá na instalação gratuita de painéis em algumas residências, para assim poder ver possíveis falhas do equipamento e conserta-las antes de entrarem no mercado.

GERASSOL NOS PRÓXIMOS ANOS

2021

PRODUÇÃO DOS PAINÉIS SOLARES E CAMPANHAS DE ARRECADAÇÃO

- Elaborar a campanha para a reciclagem de vidro, através de redes sociais, panfletos, conversas em escolas e locais de trabalho, assim como incentivo da reciclagem em restaurantes, comércios, e residências.
 Testar o produto e sua eficácia, assim
- como pontos fracos para melhora-lo.
 •Conseguir parcerias com empresas
 para a confecção das placas de vidro e
 instalação.
- Identificar áreas necessitadas para a instalação dos paneis.

2022

COMERCIALIZAÇÃO E INSTALAÇÃO DOS PAINÉIS

- Confeccionar os painéis fotovoltaicos com os recursos obtidos.
- · Participar de feiras de ciências.
- Instalação dos painéis nas áreas previamente identificadas.
- Fornecer amostras para grandes empresas.
 - Obter patrocinadores.
- Utilização dos lucros obtidos para a manutenção, seguimento e expansão do projeto.

2023

EXPANSÃO DO PROJETO PARA OUTRAS REGIÕES

- · Expandir o projeto para outras regiões.
 - Identificar possíveis parcerias com ONGs para aplicação do projeto em outras regiões.
- Divulgar a tecnologia para sua implementação em diversos lugares.
- Conscientizar o maior número de pessoas sobre a reciclagem do vidro, através das redes sociais.
- Levantamento de dados sobre escolaridade, renda familiar, saúde e expectativa de vida após a implementação dos painéis.

Produzir energia elétrica para as comunidades necessitadas, conscientizar e incentivar a reciclagem do vidro.

COM A ENERGIA ELÉTRICA

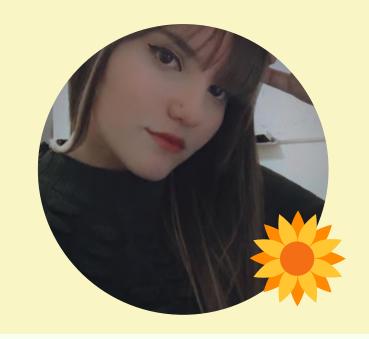
- Melhora na qualidade de vida.
- Aumento no índice de saúde, educação e retorno financeiro das propriedades.
- Recolher dados destes aumentos após a implementação dos painéis.

COM A RECICLAGEM DO VIDRO

- Aumento da quantidade vidro reciclado.
- Contribuição pra sustentabilidade ambiental.
- Recolher dados sobre a quantidade de vidro que conseguimos reciclar após a campanha.

PREMISSAS FINANCEIRAS *

	Ano 1	Ano 2	Ano 3	Ano 4
Receitas				
Quantidade de paineis por mês	10	25	35	40
Valor de venda (unit)	350	350	350	350
Receita bruta	3500	8750	12250	14000
Custos				
Matéria prima (unit)	242	242	242	242
Marketing	100	200	250	300
Mão de obra (mensal)	300	750	1050	1200
Custo total	2820	7000	9770	11180
Lucro Líquido	680	1750	2480	2820


APRESENTAÇÃO DA EQUIPE

Melissa P Coelho

Estudante do curso técnico em Sistemas de Energia Renovável. Medalhista da OBMEP, possui bom pensamento lógicomatemático.

Augusto Bisio

Estudante do curso técnico em Sistemas de Energia Renovável. Líder da equipe. Possui facilidade e enorme interesse na área de exatas.

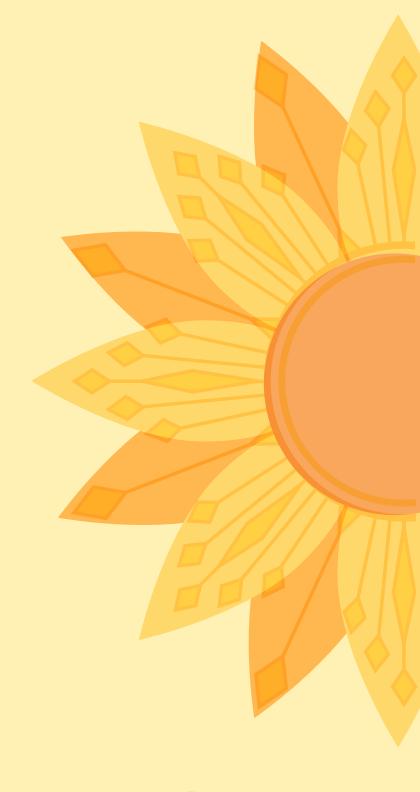
Cláudia Garrastazu


Professora
responsável pela
equipe. É engenheira
de energias e
professora nas
matérias relacionadas
à energia solar.

Barbara Rodrigues

Estudante do curso técnico em Sistemas de Energia Renovável. Ótima em humanas, é uma pessoa extremamente comunicativa.

Sarah Ribeiro


Estudante do curso técnico em Sistemas de Energia Renovável. Monitora de biologia na escola, está sempre envolvida em causas ambientais.

Equipe

Gerassol

O Sol é para todos, a energia elétrica também.

OUTUBRO 2020

